1,803 research outputs found

    A Comparison of Ultraviolet, Optical, and X-Ray Imagery of Selected Fields in the Cygnus Loop

    Full text link
    During the Astro-1 and Astro-2 Space Shuttle missions in 1990 and 1995, far ultraviolet (FUV) images of five 40' diameter fields around the rim of the Cygnus Loop supernova remnant were observed with the Ultraviolet Imaging Telescope (UIT). These fields sampled a broad range of conditions including both radiative and nonradiative shocks in various geometries and physical scales. In these shocks, the UIT B5 band samples predominantly CIV 1550 and the hydrogen two-photon recombination continuum. Smaller contri- butions are made by emission lines of HeII 1640 and OIII] 1665. We present these new FUV images and compare them with optical Halpha and [OIII], and ROSAT HRI X-ray images. Comparing the UIT images with those from the other bands provides new insights into the spatial variations and locations of these different types of emission. By comparing against shock model calculations and published FUV spectroscopy at select locations, we surmise that resonance scattering in the strong FUV permitted lines is widespread in the Cygnus Loop, especially in the bright optical filaments typically selected for observation in most previous studies.Comment: 21 pages with 10 figures. See http://www.pha.jhu.edu/~danforth/uit/ for full-resolution figure

    Virus in Water. II. Evaluation of Membrane Cartridge Filters for Recovering Low Multiplicities of Poliovirus from Water

    Get PDF
    The efficiency of a Millitube MF cartridge filter, a membrane filter, for recovery of poliovirus from 100-gal volumes of both fresh (tap) and estuarine water was determined. In the high multiplicity of virus input-output experiments, recovery of 97% or greater of input virus was achieved in both types of water when the final concentration of divalent cation as Mg2+ was 1,200 μg/ml and the pH was 4.5. Virus was effectively eluted from the membrane cartridge with 5× nutrient broth in 0.05 M carbonate-bicarbonate buffer at pH 9.0. Four elutions of 250 ml each were used. In the low multiplicity of virus input-output experiments under the same cationic and pH conditions, up to 67% of the input virus was recovered when the virus was further concentrated from the eluates by the aqueous polymer two-phase separation technique. The volume reduction was 126,000-190,000 to 1. The use of the combined techniques, i.e., membrane adsorption followed by aqueous polymer two-phase separation, provided a highly sensitive, simple, and remarkably reliable sequential methodology for the quantitative recovery of poliovirus occurring at multiplicities as low as 1 to 2 plaque-forming units per 5 gal of water

    Using Hierarchical Data Mining to Characterize Performance of Wireless System Configurations

    Full text link
    This paper presents a statistical framework for assessing wireless systems performance using hierarchical data mining techniques. We consider WCDMA (wideband code division multiple access) systems with two-branch STTD (space time transmit diversity) and 1/2 rate convolutional coding (forward error correction codes). Monte Carlo simulation estimates the bit error probability (BEP) of the system across a wide range of signal-to-noise ratios (SNRs). A performance database of simulation runs is collected over a targeted space of system configurations. This database is then mined to obtain regions of the configuration space that exhibit acceptable average performance. The shape of the mined regions illustrates the joint influence of configuration parameters on system performance. The role of data mining in this application is to provide explainable and statistically valid design conclusions. The research issue is to define statistically meaningful aggregation of data in a manner that permits efficient and effective data mining algorithms. We achieve a good compromise between these goals and help establish the applicability of data mining for characterizing wireless systems performance

    BSML: A Binding Schema Markup Language for Data Interchange in Problem Solving Environments (PSEs)

    Full text link
    We describe a binding schema markup language (BSML) for describing data interchange between scientific codes. Such a facility is an important constituent of scientific problem solving environments (PSEs). BSML is designed to integrate with a PSE or application composition system that views model specification and execution as a problem of managing semistructured data. The data interchange problem is addressed by three techniques for processing semistructured data: validation, binding, and conversion. We present BSML and describe its application to a PSE for wireless communications system design

    Orchestration of Starbirth Activity in Disk Galaxies: New Perspectives from Ultraviolet Imaging

    Full text link
    Ultraviolet imaging of nearby disk galaxies reveals the star-forming activity in these systems with unprecedented clarity. UV images recently obtained with the Shuttle-borne Ultraviolet Imaging Telescope (UIT) reveal a remarkable variety of star-forming morphologies. The respective roles of tides, waves, and resonances in orchestrating the observed patterns of starbirth activity are discussed in terms of the extant UV data.Comment: Paper format (latex); length of paper (4); 2 encapsulated postscript figure files; uses AIP Press files aipproc.cls, aipproc.sty; Journal Reference: to be published in proceedings in "Star Formation, Near and Far", Proceedings of the 7th annual Astrophysics Conference in Maryland, Steve Holt, Lee G. Mundy, editor
    corecore